iGCSE	Computer	Science –	Unit 4

English Name:	Class:	

Topic 17 Hardware: Processors – Worksheet

 $@2025~Chris~Nielsen-{\it www.nielsenedu.com}\\$

1	Research	and	Present
1.	NESCALUII	anu	L I CSCIII

iala con	nections between the components.
f the pro	ocessor above were to have an accumulator register (ACC), where would it be placed?
Somo m	odown architectures, such as DISC V do not have an assumulator register (ACC). Evaluir
where th	odern architectures, such as RISC-V do not have an accumulator register (ACC). Explair e results of a computation are stored in such an architecture.

CSE Computer Science – Unit 4	English Name:	Class:
pic 17 Hardware: Processors	– Worksheet	©2025 Chris Nielsen – www.nielsenedu.co
In a reduced instruction set architectuusing a load instruction.	re, such as ARM or RISC-V,	data is copied from memory
Describe in detail the fetch-decode-ex Assume the address of the data to be l and the data loaded is to be stored in a description of the contents of the inter registers: PC, CIR, MAR, MDR, GP1	loaded is stored in a general-p a second general-purpose regi rnal CPU registers change dui	ourpose register labelled GP1 ister labelled GP2. Include a
Fetch:		(6)
Decode:		(2)

(3)

Execute: